THE UNIVERSITY OF UTAH
COLLEGE OF ENGINEERING

REIMAGINING THE FUTURE
A BOLD NEW CAMPAIGN
If you haven’t been on campus for a while, you are in for a surprise. Since 2004, the College of Engineering has added or remodeled nearly a million square feet of space. From a state-of-the-art nanofabrication laboratory in the Serenson Molecular Biotechnology Building, to the completely upgraded, LEED Gold Rio Tinto Kennecott Mechanical Engineering Building, the college is being transformed.

With the generous support of our alumni and friends, we are engaged in a monumental, ongoing effort to create a modern engineering campus that is needed to sustain the college’s unparalleled growth. Since 2001, the College of Engineering has more than tripled its enrollment and doubled the size of the faculty.

In addition to adding more space, the college has been renovating its teaching labs to be much more experiential. We have discovered that students learn best when laboratory experiments are closely linked to classroom learning, using up-to-date equipment that reflects industry standard.
None of this progress would have happened without millions of dollars in private support from individuals like you who care deeply about the college and our mission to support the Utah economy. For the state to retain its position as the number one US economy, the college must continue to accelerate our production of graduates.

The college currently awards 46% of the BS, MS and PhD engineering and computer science degrees in the statewide system. With 35,000 job postings at tech companies, Utah's continued economic vitality hinges on our ability to do even more.

Despite two decades of non-stop construction, the College of Engineering is over-capacity. New faculty recruitment is constrained by a shortage of offices and research space. Teaching labs are in use around the clock to meet current demand and keep students on track for graduation. It's time for a dramatic step forward.

In the following pages, you will read about three of our top priority projects. While different in size and scope, they reflect our commitment to provide our students, and tomorrow's leaders, with a truly exceptional educational experience. We hope you will be inspired to help us as so many have in the past.
Campaign for Computer Science

With the university, the college is launching a $30M private campaign toward a $120M building for computer science. This 209,000 square foot structure is the key to future growth for the School of Computing. The School is the fastest growing department in the college, and on campus, with 1,683 enrolled majors. At the current rate of growth, computer science enrollment is projected to reach 2353 by 2030.

In addition to a surging enrollment, total faculty in the School of Computing is now 54, with even more yet-to-be filled new positions. In addition to teaching students, these faculty are technology innovators who have helped to increase the volume of research expenditures in everything from data analysis to cyber security to $117M in 2020, up from $49M in 2004.

The School of Computing currently occupies approximately 45,000 square feet of space on two floors of the 60-year-old Merrill Engineering Building. Severely over-capacity, this is not the appropriate environment for Utah’s flagship computer science program. To meet existing and future needs, the School of Computing must expand its footprint significantly.
The Vision

The new home for computer science will also serve as a bridge to other computing initiatives across campus, including Health Sciences and the David Eccles School of Business. A building site to the west of the James L. Sorensen Molecular Biotechnology Building and east of the John and Marva Warnock Building has been identified. A structure of at least 209,000 square feet and $120M is the current estimate for a building that will house the School of Computing and allow for expanded offerings in data analytics, cybersecurity, fintech and potentially others.

When completed, the six-story building is projected to include:

- 100 Faculty and Staff Offices
- 70,000 sq. ft. of Research Space
- 400-seat Auditorium
- 12 Classrooms
- Open Collaboration Space
- 15 Conference Rooms
- Event Space

There also exists the potential for an industry partner, or partners, to have a larger presence in the building. An office suite or shared collaborative space could provide a more direct relationship with students and faculty.

The Campaign

A committee of visionary individuals, led by honorary co-chairs John Warnock, Ed Catmull and Shane Robison, has joined Dean of Engineering Richard Brown and the university in leading the campaign for $30M in private support. Significant naming opportunities are available and gifts may be pledged over multiple years.

The College of Engineering is proud to announce a $15 million lead gift from philanthropists and benefactors John and Marcia Price to build a new home for computer science. Pending approval of the University of Utah Board of Trustees, the building will be named in their honor.

“We are pleased to lend our support to this effort that is so crucial to Utah’s expanding economy,” said John Price. “The University of Utah has an international reputation for innovation in computer science, and Marcia and I want to help ensure that opportunity for this generation and all future generations of Utah students.”

John Price is an American diplomat and former US Ambassador to Mauritius, Comoros and the Seychelles. He moved to Utah as a teenager and earned a bachelor’s degree in geological engineering at the University of Utah in 1956. Price started his career as the founder of a construction company which developed into JP Realty Inc. and was listed on the New York Stock Exchange in 1994.

Price is known as one of Utah’s most prominent businessmen, with success throughout the intermountain region. He has also served on numerous local, state, and national boards, including the University of Utah’s Board of Trustees from 1992 to 1999.

Marcia Price is a leader in the arts community, with a lifelong passion for the Utah Museum of Fine Arts where she serves as board chair. She has devoted herself to advancing the arts in Utah, serving as chair of the Utah Arts Council and later helping to establish Salt Lake County’s Zoo, Arts and Parks tax. Price received an Honorary Doctorate of Fine Arts from the University of Utah in 2006. The UMFA building, as well as the new Theatre Arts building and amphitheater are named in honor of the Price’s contributions to the arts. Marcia Price also sits on the National Committee for the Performing Arts at the Kennedy Center in Washington, D.C., and serves as board member emeritus on the boards of the Utah Symphony and Utah Opera.

John and Marcia live in Salt Lake City, where they have raised their three children and continue to spend time with their eight grandchildren and three great-grandchildren.
HEDCO Instructional Labs Renovation Project

For more than 125 years, the Department of Civil and Environmental Engineering has been one of the core engineering disciplines, focusing on sustainable built environments ranging from aviation systems to wastewater systems, critical infrastructure projects including bridges, buildings, environmental restoration, power plants, roadways, and water systems vital for economic growth and prosperity around the globe.

The undergraduate curriculum begins with a common core of classes providing students with strong foundations in environmental, geotechnical, structural, transportation and water resources. With the rapid move towards cyberinfrastructure, we must significantly upgrade the undergraduate teaching facilities to include modern applications in virtual and augmented reality, structural health monitoring, drones and remote sensing, and smart pavements.

The department has identified 5,000 square feet on two floors of the historic HEDCO building as the new core for our undergraduate teaching laboratories. Originally constructed in the 1930’s, the facility was among several buildings that were deeded to the university from the U.S. Bureau of Mines in the 1980’s. Our vision for the future includes modern, dedicated laboratories for teaching hydraulics, cyber research, concrete mixing technology, student project/meeting space, and graduate student space.
Cyber Infrastructure Lab

The development of a new, integrated curriculum will bring the power of cyber technologies to the maturing area of sustainability engineering, by integrating advanced computer-aided systems into transformative infrastructure projects. In the future, smart infrastructure will be capable of evaluating the performance of bridges, roads, buildings, and pipelines, and identify maintenance needs, provide rapid assessment after hazard events, identify functioning emergency routes, and prevent tragedies.

Maker Space

The freshman-level “Introduction to Civil Engineering” course needs space for students to explore concepts vs. watching presentations and videos of engineering work. This space will allow instructors to develop hands-on experiments aimed at explaining the fundamentals of statics, materials, water resources, environmental processes, and cyber infrastructure. Plans include 3D printers, laser cutters and other modern equipment.

Hydraulics Laboratory

Understanding the movement of water in pipes, canals, and rivers is essential for designing drinking and wastewater systems and ecosystem protection. As such, our hydraulics laboratory has been a staple in our curriculum for many years. The HEDCO renovation project will relocate the hydraulics lab that is currently housed in the Merrill Engineering Building. The move will consolidate all four teaching labs into one building making it easier for technicians and optimizing student lab experiences. It will also open up critically needed space in the Merrill Building for other departments whose labs are over-capacity.

Materials Laboratory

Materials, like concrete, asphalt and others, are an important laboratory experience for Civil and Environmental Engineering students. Over time, the department has invested in the latest technologies that require modification of the existing space to ensure safety and better access to these tools. The renovation will also provide space for the student ASCE concrete canoe along with an ADA entrance added to the south and emergency exit to the north.

The Campaign

The Civil and Environmental Engineering Department is asking alumni, industry partners, faculty and friends to support the campaign. Total cost estimates for the HEDCO Instructional Labs Renovation Project are approximately $4M due to the age of the building and significant structural elements, including seismic upgrades. Gifts of $1,000 or more will be recognized on a permanent plaque. Naming opportunities are available and may be pledged over multiple years.
Chemical Engineering Process Technology Lab

Ten years ago the Chemical Engineering Department initiated a multi-phase effort to modernize and expand its teaching laboratories. A new BioLab now supports the growing importance of bioengineering topics. The 2,300 square foot Peter and Catherine Meldrum Innovation Laboratory was completed for first-year students and includes 3-D printers, laser cutters, maker space, wet lab space, fume hoods and creative work areas.

The department now plans to extend the opportunity for experiential learning by creating the Process Technology Lab. Two new courses developed for the junior year will tie laboratory experiences to specific process lecture courses. Phase III of the multi-phase lab renovation program will create and equip this new space.

The new Process Technology Lab will be the hub for upper level students providing multiple, hands-on experiences related to chemical engineering process steps. The goal will be teaching the students to use modern, experimental measurement techniques and computer simulations to properly analyze complex chemical processes.
Features

The Process Technology Lab will be closely coupled with chemical engineering process courses taught in the junior year of the program. Courses CH EN 3701 and 3702 will include multiple, individual experiments related to instruction in:

- Fluid Mechanics
- Energy Transfer
- Thermodynamics
- Mass Transfer and Separations
- Chemical Reaction Engineering
- Biochemical Engineering

Many of the experiments will be designed to be moveable so they can be positioned within the main laboratory space when a particular subject is being emphasized.

The new lab will occupy 2,100 square feet on level two of the Merrill Engineering Building. Remodeling is scheduled to begin in spring 2022, leveraging approximately $10M in infrastructure improvements recently made to the 60-year-old Merrill Engineering Building.

The Campaign

The Chemical Engineering Department is asking alumni, industry partners, faculty and friends to help with project costs of $800,000. Approximately $600,000 is needed for the physical construction including the instructional islands and thematic work areas. An additional $200,000 will be required for laboratory equipment. Donations of $1,000 or more will be recognized on a permanent display. Major naming opportunities may be pledged over several years.

We are pleased to announce a lead gift of $250,000 from the Meldrum Foundation that was established by the late chemical engineering alumnus Peter Meldrum, his wife Catherine, son Christopher and daughter-in-law Jenette. The Meldrum family have been benefactors and champions of chemical engineering for nearly two decades through such generous gifts as the Meldrum BioLab, the Meldrum Innovation Lab and the Meldrum Endowed Professorship. Their name has become synonymous with excellence in engineering education.
Creating a Scholarship:

In addition to capital improvements, scholarships have been a fundraising priority for the College of Engineering for nearly three decades. In FY21, the college received $1.63 million in scholarships donations, while adding 5 new endowments for a total of 103. The majority of our scholarships are funded by alumni who received scholarships themselves as students.

Within the ranks of our students today are the pioneers and innovators of tomorrow. A growing number have been deeply affected by the pandemic, putting them at risk for delaying graduation or dropping out altogether. As a nation, we can’t afford to lose a single student. Each new class of engineering and computer science graduates represents the human capital we need to help the economy recover and create solutions to the problems of the future.

Please consider investing in tomorrow’s technology leaders by supporting a scholarship.
Flexible Options

You don’t need to be wealthy to support a scholarship; even a modest donation can have a major impact. Here are just a few of the ways your giving can make a difference.

Gifts of Any Amount:
Your scholarship donation of any amount is needed and welcome. You can make an outright gift or pledge monthly using a convenient credit card option. Your gift can be designated for the College of Engineering scholarship account or go directly to your home department.

Named Scholarships:
A donation of $1,000 or more receives an automatic $1,000 match from the college. We invite you to add your name to the scholarship, or designate a parent, teacher, or loved one. Adding your name to a scholarship inspires students to give in the future.

Matching Gifts:
You can add to the value of your gift by applying to your company’s matching gift program, where available.

Endowed Scholarships:
You can create a lasting legacy through a scholarship endowment with a gift of $25,000 or more. Endowments can be established with a single donation, or created over a five-year period in $5,000 increments. Endowment gifts receive a $2,000 match that is awarded as a scholarship in the donor’s name.

Deferred Gifts:
Endowments can also be secured through deferred gift such as a bequest, life insurance policy, or other estate planning vehicle.

To learn more about any of these giving opportunities at the College of Engineering, contact Josh Grant at: josh.grant@utah.edu, or 801-585-7173.